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Abstract: Let G be a connected real semisimple Lie group with finite
center and # be a Cartan involution of G. Suppose that K is the max-
imal compact subgroup of G corresponding to the Cartan involution 6.
The coset space X = G/K is then a Riemannian symmetric space. De-
note by g the Lie algebra of G and g = ¢ + p the Cartan decomposition
of g into eigenspaces of 6. Let a be a maximal abelian subspace in p
and ¥ be the corresponding restricted root system. In [5], by choosing
Y ={a€¥|2a¢X; §¢X} instead of the restricted root system ¥
and using the action of the Weyl group, we constructed a compact real
analytic manifold X’ in which the Riemannian symmetric space G/K
is realized as an open subset and that G acts analytically on it. In our
construction, the real analytic structure of X’ induced from the real an-
alytic srtucture of Z]R, the compactification of the vectorial part. The
purpose of this note is to show that the system of invariant differential
operators on X = G/K can extends analytically on X'

Keywords: Symmetric spaces, Weyl group, Cartan decomposition,

compactification.
1 INTRODUCTION

Let G be a connected real semisimple Lie group with finite center and g be the Lie
algebra of GG. Denote by 6 the Cartan involution of G and K the fixed points of 6.
Then K is a maximal compact subgroup of G and the coset space X = G/K becomes
a Riemannian symmetric space. We also denote by 6 the Cartan involution of g corre-
sponding to the Cartan involution 8 of G. Then g = £ 4 p is the Cartan decomposition
of g into eigenspaces of 8, where ¢ is the Lie algebra of K.

Let a be a maximal abelian subspace in p and a* be the dual space of a. The corre-
sponding analytic subgroup A of a in G is then called the vectorial part of X. For a

non zero « € a*, the non zero eigenspace

0o =1{Y €g|[H,Y]=«a(H)Y, VH € a}
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is called the root space and the corresponding o's the restricted root. Then the set
Y ={aeca"|gy#{0},a# 0} defines a root system with the inner product induced
by the Killing form <, > of g. Moreover, the Weyl group W of ¥ is defined with the
normalizer Nk (a) of a in K modulo the centralizer M = Zg(a) of a in K. It acts

naturally on a and coincides via this action with the reflection group of .

Choose a fundamental system A = { ay,...,; } of ¥, where the number [ which equals
dim a is called the split rank of the symmetric space X and denote X the corresponding

set of all restricted positive roots in 3.

Denote by gc the complexification of g and G¢ the corresponding analytic group. Let
ac be the complexification of a and Ac be the analytic subgroup of ac in G¢. For each
a € Ac and o € ¥ we define a® = ¢*9¢ ¢ C* = C\ {0} and consider the subset

Ar={acAc|a* € R, Vac X}

Let (C*)* be the set of complexes z = (z3)gex, where 23 € C* and CIP! be the

1-dimensional complex projective space. Then we can define a map
©: Ac — (CHZ, a— ¢(a) = (a%)aes.

In [2], based on the natural imbedding of (C*)* into (CIP!)*, we constructed an imbed-
ding of AR into a compact real analytic manifold ﬁIR which is called a compactification
of AR.

In [5], by choosing the reduced root system ¥’ = {a € ¥ | 2 ¢ X; § ¢ X} instead
of 3 and using the action of the Weyl group, we constructed a compact real analytic
manifold X’ in which the Riemannian symmetric space G/K 1is realized as an open
subset and that G acts analytically on it. Moreover, the real analytic structure of X!
induced from the real analytic srtucture of AR. Our construction is a motivation of
the construction of T. Oshima and J. Sekiguchi [9] for affine symmetric spaces and it

is similar to those in N. Shimeno [10] for semismple symmetric spaces.

In this note, first we recall some notation and results concerning the compactification
of Riemannian symmetric spaces constructed in [5] and then we show that the sys-
tem of invariant differential operators on X = G/K can extends analytically on the

compactification X'

2 A REALIZATION OF RIEMANNIAN SYMMETRIC SPACES

In this section, we recall some notation and results concerning the compactification of

Riemannian symmetric spaces constructed in [5].

Let G be a connected real semisimple Lie group with finite center and g be the Lie
algebra of G. Denote by g the complexification of g and G¢ the corresponding analytic
group. For simplicity, we assume that G is the real form of the complex Lie group Gc¢.

Let ac be the complexification of a and A¢ be the analytic subgroup of ac in G¢. Then
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we can consider the map ¢ : Ac — (C*)* which is defined by ¢(a) = (a%*)aes, Va €
Ag, where (C*)¥ is the set of complexes z = (z3)gex.

It follows that for every z = (20)acx € ¢(Ac) we have

2 0= (24)7", Vo €X (2.1)

Zq = H (z)¥@) Yo e Bt o= Z ko, 7).y. (2.2)
QISTA yEA
Denote CIP' the 1-dimensional complex projective space. Then, based on the natural
imbedding of (C*)* into (CIP!)*, we get an imbedding map of Ac into (CIP')* denoted
also by ¢. Now for each a € Ac and a € X we define a® = ¢*?9® ¢ C* = C\ {0} and
consider the subset
Ar={a€cAc|a* e R, VaecX }.

By definition, ¢(AR) is a subset of (IRIP1)®. Let AR be the closure of ©(AR) in (RIP1)>.

Denote by Ua the subset of gIR consists of elements m = (Mmq, m_gq), for all @ € T
such that
mey = H (my)k(a,’y% a = Z k(aar)/)fy
yEA RISTAN

-1

and m_, =m, .

Then Ua is an open subset in E]R and we get a homeomorphism ya : Usa — R?
defined by xa(m) = (my)yea, Vm € Ua. Moreover, it follows from [2, Theorem 1.4
that E]R is a compact real analytic manifold that is called a compactification of AR
and the set of charts {(Uy(a); Xw(a)) }wew defines an atlas of charts on AR so that the
manifold AR is covered by |W|-many charts.

Consider the subset A\I_R ={aec AR | (@)* € [-1,1,Va € & } and recall that the
Weyl group W acts on AR by (w.a)o = (a)y-14, Yw € W, Va € AR. Since AR acts
naturally on f/l\]R, we see that for each a € ﬁlﬁ, there exists t € [—1, 1]A and a; € AR
such that @ = a;.sgn t and this decomposition is unique. Here sgn t = (sgn ty)yea and
for an s in IR we define sgn s =1 (resp. 0,—1) if s > 0 (resp. s = 0, s < 0). Moreover,
by choosing a suitable positive system ¥ we obtain WA\;R = A\]R.

Note that for a € E]ﬁ’ we obtain €(a) € {—1,0,+1}* and for all @ € ¥ so that

a= > k(a,v).v, we have
YEA

e(a)® = H (e(@))Flenl

YEA
It follows that the mapping € of ¥ to {—1,0,+1} defined by

e: X —{-1,0,+1}, a— e(a) =e€(a)*
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is an extended signature of roots that is defined in [9, Definition 2.1].

Now we go to define parabolic subalgebras with respect to extended signatures of roots
e =e(a), for all @ € Ap.
First we consider a € Xﬁ and denote € = €(a) the corresponding extended signature of

roots. Put Fe ={vy€ A|e(y)=€(a)”#0 } and X, = ( >, Ry)NX.
yEFe

Then as in [9], we can define a parabolic subalgebra p in g with p. = m.+a.+n, is the
corresponding Langlands decomposition. Denote P, the parabolic subgroup in G with
respect to p., we see that P, = M A.N¢ is the corresponding Langlands decomposition
of P, where A., N, (M¢)o are the analytic subgroups of G, respectively, to ac, ne, me
and M, = (M¢)oM.

Moreover, it follows from [9, Lemma 2.3] that P(e) = (M.NK)AN, is a closed subgroup
of G and the map

N~ x A(e) x P(e) — G, (n,a,p) — nap
is an analytic diffeomorphism onto an open submanifold of G.

In general, for each 7 = w.a € E]R, where w € W and a € XE{, we firstly consider
the parabolic subgroup P. = M.A.N. with respect to € = €(a), the corresponding
extended signature of a. Then we can define a parabolic subgroup P; = w.P.aw™!
based on the action of the Weyl group W on the parabolic subgroup P,. Here w denote

a representative for w € W in N (a) (see [1]).

Now we put ¥/ = {a € ¥ | 2a ¢ X; § ¢ X} and denote X, = {a € X' | €(a) = 1} for
every extended signature e of roots defined by €(a). Then (see [9]) it follows that >’ and
¥t are reduced root systems. Let W', W/ and W}, be the subgroups of W generated
by the reflections with respect to the roots in ¥/, X, and X7, .

Denote XjR =W ng and consider the product manifold G x ESR Let = = (g,7) be an
element of G x E]R, where 7] = w.a, in which w € W’ and a € gﬁ Then the extended
signature of roots with respect to a denoted by e, = €(a). For simplicity, we denote
P(x), Fy, Sg, X5, Wy, ... instead of P(ez), Fe,, e, Xc,, W, , ..., respectively.

Let {Hy,Hs,...,H;} denote the dual basis of A = {a1,...,a;}, that is, H; € a and

oi(Hj) = &;j, Vi,j = 1,2,..,1. Put a(z) = exp(—% Y loglt,| H,), where H, is in
YEF:
{Hy, Hs, ..., H;} with respect to v and denote W (z) = {w € W, | Z,NwEt = ¥, N},

Definition 2.1. We say that two elements z = (g,w.a) and 2’ = (¢’,w'.a) of G x ijR

are equivalent if and only if the following conditions hold:
(i) w.e, = w'.€,
(ii) wlw’ € W(z)

(iii) ga(z)P(x)w = g'a(z")P(z)w’.

[
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Then it follows that (see [9]) Definition 2.1 really gives an equivalence relation, which
we write x ~ 2’. Moreover, we see that the action of G on G x ng are compatible with
the equivalence relation and the quotient space of G x IZ’IR by this equivalence relation

then becomes a topological space with the quotient topology and denoted by X'

~
/!

Let m: G x A\ﬁ{ — X' be the natural projection. Since the action of G on G x Ap; are

compatible with the equivalence relation, we can define an action of G on X/ by
ngF(g, CNL) - W(glga &), Vg,gl € Gvé € A}R (23)

Now consider the atlas of charts {(Uy(a), Xw(a)) fwew on AR defined in [2, Theorem
1.4], where Upay = wlUna and Xya) : Uy — R*(®) is a homeomorphism defined
by

Xw(a)(w.m) = (My-1.4)yen, Vm € Un,w € W,

For every g € G and w € W', we put Qf = 7(gN~ X Uyy(a)), in which N~ is the

analytic subgroup of G corresponding to n~ = 6(n), where n = > g, and define a
aext

map

YN~ xR — QY
by &7 (n,t) = n(gn,w.at), V(n,t) € N~ x RA.
Based on this, we get the following theorem [5, Theorem 3.5].
Theorem 2.2. The topological space X' have the following properties:

(i) X' is a compact connected real analytic manifold and U Qf is an open cov-
weW’ geG

ering of X' such that the maps Py are real analytic diffeomorphisms.

(ii) The action of G on X' is analytic and the orbit Gr(z) for a point = in X' is
isomorphic to the homogeneous space G/P(z). In particular, the number of G-orbits

which are isomorphic to G/K (resp. G/P) are just the number of elements in W'.

3 INVARIANT DIFFERENTIAL OPERATORS

Let G be a connected real semisimple Lie group with finite center and 6 be a Cartan
involution of GG. Suppose that K is the maximal compact subgroup of G corresponding
to the Cartan involution #. The coset space X = G/K is then a Riemannian symmetric
space. In [2], by choosing ¥’ = {a € X | 2a ¢ ¥; § ¢ X} instead of the restricted
root system X and using the action of the Weyl group, we constructed a compact real
analytic manifold X’ in which the Riemannian symmetric space G/K is realized as
an open subset and that G acts analytically on it. In this section, we shall show that
the system of invariant differential operators on the symmetric space X = G/K can

extends analytically on the compact G-space X'
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First we recall after [7] on the structure of the algebra of invariant differential operators
on G/K. Let U(g) be the universal enveloping of gc, which is naturally identified
with D(G), the totality of the left G-invariant differential operators on G. Denote by
D(G/K) the algebra of left G-invariant differential operators on G/K and put

U(g)X = {D eU(g) | Ad(k)D = D for any k € K}.

Then D(G/K) is a polynomial ring over C and there exists a natural homomorphism
of U(g)X onto D(G/K) with the kernel U(g)* Nid(g)t.

For a Lie subalgebra b of g, let denote U/(b) the universal enveloping algebra of bc. Then
we can naturally identify 2/(b) with a subalgebra of U(g). Let € be the natural surjective
homomorphism of (g)® onto D(G/K) with the kernel U(g)X N (g)t. It follows that
there is an isomorphism ¢ between D(G/K) and U(g)X /(U(g)® N U(g)t). Moreover,
since the Iwasawa decomposition g = € + a + 1, we see that for any D € D(G/K)%
there exists a unique element D’ € U(a + n) such that D' — D € U(g)¢.

Now we review the structure of invariant differential operators on G/K. First the com-
plex linear extension of the involution € on g¢ is also denoted by the same letters.
Denote by X(b) the root system for the pair (gc,ac) and X(a)™ the set of positive
roots with respect to a compatible orders for #(a) and 0. Put p = %Zaeﬂ(a)Jr a. De-
note by ng the nilpotent subalgebra of gc corresponding to #(a)t and nc = 6(ng).
From the Iwasawa decomposition gc = tc @ nc @ ac and the Poincare-Birkhoff-Witt

theorem, it follows that
U(g) =nc U(nc @ ac) © U(a) © U(g)b. (3.1)

Then for any D € D(G/K)¥ there exists a unique element D’ € U(a) such that
D! — D e ncl(g) + U(g)t. Let denote

U@V ={D e U(a) | Ad(w)D = D for any w € W}

and put Dy = e” o D! 0 e™”, where e is the function on A defined by e?(a) = eP(l09%)

for all @ € a. Then the map
fi:U(g)" — U(a), D~ Dy

defines a surjective homomorphism of U (g)¥ onto U(a)"V with the kernel U (g)* Nt/ (g)¢.

Hence, based on the isomorphism &, we see that & induces the algebra isomorphism
p:D(G/K) — U)WV
by identifying algebras D(G/K) and U (g)% /(U (g)® NU(g)t).

Now we will study G-invariant differential operators on the G-manifold X' constructed

in Section 2 based on the invariant differential operators on the manifold X = G/K.
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Consider an element a € E]i such that e(a) € {—1,+1}* and denote by € = ¢(a)
the corresponding (extended) signature of roots. Then, by Definition 1.1 in [9], we
can determine an involution . induced from the Cartan involution 6 of g such that
g = & + pc is the decomposition of g into eigenspaces £, and p. of 6., with respect to

eigenvalues +1 and —1.

Let (K)o be the analytic subgroup of G corresponding to Lie subalgebra €. and denote
K¢ = (K¢)oM. Then, by using Lemma 1.4 (ii) in [9], we see that K. is a closed subgroup
of G with &, is its Lie algebra and in the case of 6. extended into an involution of G,
denoted also by 8, the closed subgroup K. is .-invariant.

Moreover, the adjoint representation Ad of G induces an isomorphism between the
homogenous space G /K, and the space Intg/Ad(K.), where Intg is the adjoint group
of g. Then it follows from [9, Remark 1.5] that G/K, becomes a symmetric homogenous
space and called an affine symmetric space.

For every w € W’ and € € {—1,1}*, consider giae ={w.a; € ﬁjR | (@) = €} and
denote )/Q“ =7(G x XjR .) the corresponding orbit in X',

Consider the subset F, = { v € A | ea(y) = €(a)” # 0 } of A corresponding to the
extended signature of roots € € {—1,0,1}* and denote P(e) = (M.NK)A.N. the closed
subgroup of G with respect to the signature € considered in the previous subsection. In
the case of F, = A for every € = €(a); that is € becomes a signature of roots, we see
that Wp, = W, M. = G and P(e) = K..

Then, based on Theorem 2.5, we get the following corollary.
Corollary 3.1. For every w € W and € € {—1,1}>, there exists an isomorphism

A GIKe — X, (3.2)
defined by AV (gK¢) = m(g,w.az), for all g € G and e(a;) = e.

Denote D(G/K.) the algebra of G-left invariant differential operators on G/K. and
consider U(g)Xe = {D € U(g) | Ad(k)D = D for any k € K.}. Then, by a similar argu-
ment as the case of D(G/K), there exists a canonical algebra surjective homomorphism
fie of U(g)Xe onto D(G/K.) with its kernel is U(g)"c NU(g)t..

Denote o, the automorphism of gc defined in [9, Lemma 1.3] and consider the au-
tomorphism of /(g) naturally induced by the automorphism o, that is also denoted
by o.. Then, applying Lemma 2.24 in [9], we get U(g)¥c = o.(U(g)¥). It follows that
there is an isomorphism between U (g)*< and ¢(g)®. Combining this with the algebra
isomorphism u, we see that the surjective homomorphism fi induces an isomorphism

between algebras D(G/K.) and U(a)"V'. In other words, we obtain the following lemma.
Lemma 3.2. For every signature of root € € {—1, 1}A, there exists an isomorphism
pe: D(G/Ke) — U@ (3.3)

between algebras D(G/K.) and U(a)V.
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Now, we go to determine G-invariant differential operators on the G-compact manifold
X’ based on the invariant differential operators on the affine symmetric space G/K..
Denote by D(X') the algebra of G-invariant differential operators on the manifold X’

whose coefficients are real analytic functions. Then we have the following theorem.

Theorem 3.3. For every w € W’ and ¢ € {—1,1}2, there exists an algebra isomor-
phism
A: DX — U)W

that is given by A\(D) = pco ()\’E”)_l(DDA(ﬁvU’E) for all D € D(X'), which does not depend
on the choice of a signature € of roots in {—1, 1}A and an element w in W'.
Ching minh. Because of )A(;)e is open in the connected manifold X’ and . is an iso-
morphsm, it follows that A is injective. Now we consider an element D, € U(a)"V. To
get the Theorem we have only to prove the existence of a differential operator D on X/
satisfying

peo (\)"H(DIXY, ) = D

€

Indeed, we first prove that
Ao (te) " (Da) = N 0 (pter) ™ (Da) (3.4)

for a choice of signatures €, ¢ of roots in {—1,1}* and elements w, w’ in W’ such that
X;U,e = X/w’,e"

Since /i is a surjective homomorphism of U(g)¥ onto U(a)", we can choose D € U(g)¥
so that ji(D) = D,.
Then, based on the definitions of X' and e we see that (3.4) is equivalent to

fic 0 0e(D) = fic 0 Ad(w™'w')oe (D) (3.5)
if X;Ue == X’/LU/ e

Now by the same argument as the proof of Proposition 2.26 in [9], we can prove that
for a choice of signatures €, € of roots in {—1,1}* and elements w, w’ in W’ such that
)/QM = }A(L),’e,, the formula (3.5) is true. In other words, the formula (3.4) is true.

Moreover, when ¢ is a trivial signature; that is € = 1, it follows that A% o (u1)~1(D,)

can be analytically extended to a differential operator Dy’ on €2y’ such that
Dyl N X, = AL o (ue) ™M (Da) |25 N X0,

for every signature € of roots and w € W'.

Based on this and the formula (3.4), there exists a differential operetor D on X' satis-
fying D|Qy = D}’ for any g € G and w € W'.

Then, it follows from the uniqueness of the analytic continuation that the operator D

is G-invariant and the theorem follows. O
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