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Abstract: Let G be a connected real semisimple Lie group with finite
center and θ be a Cartan involution of G. Suppose that K is the max-
imal compact subgroup of G corresponding to the Cartan involution θ.

The coset space X = G/K is then a Riemannian symmetric space. De-
note by g the Lie algebra of G and g = k + p the Cartan decomposition
of g into eigenspaces of θ. Let a be a maximal abelian subspace in p

and Σ be the corresponding restricted root system. In [5], by choosing
Σ′ = {α ∈ Σ | 2α /∈ Σ; α

2 /∈ Σ} instead of the restricted root system Σ

and using the action of the Weyl group, we constructed a compact real
analytic manifold X̂′ in which the Riemannian symmetric space G/K
is realized as an open subset and that G acts analytically on it. In our
construction, the real analytic structure of X̂′ induced from the real an-
alytic srtucture of ÂIR, the compactification of the vectorial part. The
purpose of this note is to show that the system of invariant differential
operators on X = G/K can extends analytically on X̂′.

Keywords: Symmetric spaces, Weyl group, Cartan decomposition,
compactification.

1 INTRODUCTION

Let G be a connected real semisimple Lie group with finite center and g be the Lie
algebra of G. Denote by θ the Cartan involution of G and K the fixed points of θ.
Then K is a maximal compact subgroup of G and the coset space X = G/K becomes
a Riemannian symmetric space. We also denote by θ the Cartan involution of g corre-
sponding to the Cartan involution θ of G. Then g = k+ p is the Cartan decomposition
of g into eigenspaces of θ, where k is the Lie algebra of K.

Let a be a maximal abelian subspace in p and a∗ be the dual space of a. The corre-
sponding analytic subgroup A of a in G is then called the vectorial part of X. For a
non zero α ∈ a∗, the non zero eigenspace

gα = {Y ∈ g | [H,Y ] = α(H)Y, ∀H ∈ a}
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is called the root space and the corresponding α′s the restricted root. Then the set
Σ = {α ∈ a∗ | gα 6= {0}, α 6= 0} defines a root system with the inner product induced
by the Killing form <,> of g. Moreover, the Weyl group W of Σ is defined with the
normalizer NK(a) of a in K modulo the centralizer M = ZK(a) of a in K. It acts
naturally on a and coincides via this action with the reflection group of Σ.

Choose a fundamental system ∆ = { α1, ..., αl } of Σ, where the number l which equals
dim a is called the split rank of the symmetric spaceX and denote Σ+ the corresponding
set of all restricted positive roots in Σ.

Denote by gC the complexification of g and GC the corresponding analytic group. Let
aC be the complexification of a and AC be the analytic subgroup of aC in GC. For each
a ∈ AC and α ∈ Σ we define aα = eαlog a ∈ C∗ = C \ {0} and consider the subset

AIR = { a ∈ AC | aα ∈ IR, ∀α ∈ Σ }.

Let (C∗)Σ be the set of complexes z = (zβ)β∈Σ, where zβ ∈ C∗ and CIP1 be the
1-dimensional complex projective space. Then we can define a map

ϕ : AC −→ (C∗)Σ, a 7→ ϕ(a) = (aα)α∈Σ.

In [2], based on the natural imbedding of (C∗)Σ into (CIP1)Σ, we constructed an imbed-
ding of AIR into a compact real analytic manifold ÂIR which is called a compactification
of AIR.

In [5], by choosing the reduced root system Σ′ = {α ∈ Σ | 2α /∈ Σ; α
2 /∈ Σ} instead

of Σ and using the action of the Weyl group, we constructed a compact real analytic
manifold X̂′ in which the Riemannian symmetric space G/K is realized as an open
subset and that G acts analytically on it. Moreover, the real analytic structure of X̂′

induced from the real analytic srtucture of ÂIR. Our construction is a motivation of
the construction of T. Oshima and J. Sekiguchi [9] for affine symmetric spaces and it
is similar to those in N. Shimeno [10] for semismple symmetric spaces.

In this note, first we recall some notation and results concerning the compactification
of Riemannian symmetric spaces constructed in [5] and then we show that the sys-
tem of invariant differential operators on X = G/K can extends analytically on the
compactification X̂′.

2 A REALIZATION OF RIEMANNIAN SYMMETRIC SPACES

In this section, we recall some notation and results concerning the compactification of
Riemannian symmetric spaces constructed in [5].

Let G be a connected real semisimple Lie group with finite center and g be the Lie
algebra of G. Denote by gC the complexification of g and GC the corresponding analytic
group. For simplicity, we assume that G is the real form of the complex Lie group GC.
Let aC be the complexification of a and AC be the analytic subgroup of aC in GC. Then
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we can consider the map ϕ : AC −→ (C∗)Σ which is defined by ϕ(a) = (aα)α∈Σ, ∀a ∈
AC, where (C∗)Σ is the set of complexes z = (zβ)β∈Σ.

It follows that for every z = (zα)α∈Σ ∈ ϕ(AC) we have

z−α = (zα)−1, ∀α ∈ Σ (2.1)

zα =
∏
γ∈∆

(zγ)k(α,γ), ∀α ∈ Σ+, α =
∑
γ∈∆

k(α, γ).γ. (2.2)

Denote CIP1 the 1-dimensional complex projective space. Then, based on the natural
imbedding of (C∗)Σ into (CIP1)Σ, we get an imbedding map of AC into (CIP1)Σ denoted
also by ϕ. Now for each a ∈ AC and α ∈ Σ we define aα = eαlog a ∈ C∗ = C \ {0} and
consider the subset

AIR = { a ∈ AC | aα ∈ IR, ∀α ∈ Σ }.

By definition, ϕ(AIR) is a subset of (IRIP1)Σ. Let ÂIR be the closure of ϕ(AIR) in (IRIP1)Σ.

Denote by U∆ the subset of ÂIR consists of elements m = (mα,m−α), for all α ∈ Σ+

such that

mα =
∏
γ∈∆

(mγ)k(α,γ), α =
∑
γ∈∆

k(α, γ).γ

and m−α = m−1
α .

Then U∆ is an open subset in ÂIR and we get a homeomorphism χ∆ : U∆ −→ IR∆

defined by χ∆(m) = (mγ)γ∈∆, ∀m ∈ U∆. Moreover, it follows from [2, Theorem 1.4]
that ÂIR is a compact real analytic manifold that is called a compactification of AIR

and the set of charts {(Uw(∆), χw(∆))}w∈W defines an atlas of charts on ÂIR so that the
manifold ÂIR is covered by |W |-many charts.

Consider the subset Â−IR = { ã ∈ ÂIR | (ã)α ∈ [−1, 1],∀α ∈ Σ } and recall that the
Weyl group W acts on ÂIR by (w.ã)α = (ã)w−1α, ∀w ∈ W, ∀ã ∈ ÂIR. Since AIR acts
naturally on ÂIR, we see that for each ã ∈ Â−IR, there exists t ∈ [−1, 1]∆ and at ∈ AIR

such that ã = at.sgn t and this decomposition is unique. Here sgn t = (sgn tγ)γ∈∆ and
for an s in IR we define sgn s = 1 (resp. 0,−1) if s > 0 (resp. s = 0, s < 0). Moreover,
by choosing a suitable positive system Σ+ we obtain W.Â−IR = ÂIR.

Note that for ã ∈ Â−IR, we obtain ε(ã) ∈ {−1, 0,+1}∆ and for all α ∈ Σ so that
α =

∑
γ∈∆

k(α, γ).γ, we have

ε(ã)α =
∏
γ∈∆

(ε(ã)γ)|k(α,γ)|.

It follows that the mapping ε of Σ to {−1, 0,+1} defined by

ε : Σ −→ {−1, 0,+1}, α 7→ ε(ã) = ε(ã)α
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is an extended signature of roots that is defined in [9, Definition 2.1].

Now we go to define parabolic subalgebras with respect to extended signatures of roots
ε = ε(ã), for all ã ∈ ÂIR.

First we consider ã ∈ Â−IR and denote ε = ε(ã) the corresponding extended signature of
roots. Put Fε = { γ ∈ ∆ | ε(γ) = ε(ã)γ 6= 0 } and ΣFε = (

∑
γ∈Fε

IRγ) ∩ Σ.

Then as in [9], we can define a parabolic subalgebra pε in g with pε = mε+aε+nε is the
corresponding Langlands decomposition. Denote Pε the parabolic subgroup in G with
respect to pε, we see that Pε = MεAεNε is the corresponding Langlands decomposition
of Pε, where Aε, Nε, (Mε)0 are the analytic subgroups of G, respectively, to aε, nε, mε

and Mε = (Mε)0M.

Moreover, it follows from [9, Lemma 2.3] that P (ε) = (Mε∩K)AεNε is a closed subgroup
of G and the map

N− ×A(ε)× P (ε) −→ G, (n, a, p) 7→ nap

is an analytic diffeomorphism onto an open submanifold of G.

In general, for each η̃ = w.ã ∈ ÂIR, where w ∈ W and ã ∈ Â−IR, we firstly consider
the parabolic subgroup Pε = MεAεNε with respect to ε = ε(ã), the corresponding
extended signature of ã. Then we can define a parabolic subgroup Pη̃ = w.Pε.w

−1

based on the action of the Weyl group W on the parabolic subgroup Pε. Here w denote
a representative for w ∈W in NK(a) (see [1]).

Now we put Σ′ = {α ∈ Σ | 2α /∈ Σ; α
2 /∈ Σ} and denote Σ′ε = {α ∈ Σ′ | ε(α) = 1} for

every extended signature ε of roots defined by ε(ã). Then (see [9]) it follows that Σ′ and
Σ′ε are reduced root systems. Let W ′, W ′ε and W ′Fε be the subgroups of W generated
by the reflections with respect to the roots in Σ′, Σ′ε and Σ′Fε .

Denote Â′IR = W ′.Â−IR and consider the product manifold G× Â′IR. Let x = (g, η̃) be an
element of G× ÂIR, where η̃ = w.ã, in which w ∈W ′ and ã ∈ Â−IR. Then the extended
signature of roots with respect to ã denoted by εx = ε(ã). For simplicity, we denote
P (x), Fx, Σx, Σ′x, W

′
x, ... instead of P (εx), Fεx , Σεx , Σ′εx , W

′
Fεx
, ..., respectively.

Let {H1, H2, ...,Hl} denote the dual basis of ∆ = {α1, ..., αl}, that is, Hj ∈ a and
αi(Hj) = δij , ∀i, j = 1, 2, ..., l. Put a(x) = exp(−1

2

∑
γ∈Fx

log|tγ | Hγ), where Hγ is in

{H1, H2, ...,Hl} with respect to γ and denote W (x) = {w ∈Wx | Σx∩wΣ+ = Σx∩Σ+}.

Definition 2.1. We say that two elements x = (g, ω.ã) and x′ = (g′, ω′.ã) of G× Â′IR
are equivalent if and only if the following conditions hold:

(i) w.εx = w′.ε′x

(ii) w−1w′ ∈W (x)

(iii) ga(x)P (x)w = g′a(x′)P (x)w′.
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Then it follows that (see [9]) Definition 2.1 really gives an equivalence relation, which
we write x ∼ x′. Moreover, we see that the action of G on G× Â′IR are compatible with
the equivalence relation and the quotient space of G× Â′IR by this equivalence relation
then becomes a topological space with the quotient topology and denoted by X̂′.

Let π : G× Â′IR −→ X̂′ be the natural projection. Since the action of G on G× Â′IR are
compatible with the equivalence relation, we can define an action of G on X̂′ by

g1π(g, ã) = π(g1g, ã), ∀g, g1 ∈ G, ã ∈ Â′IR. (2.3)

Now consider the atlas of charts {(Uw(∆), χw(∆))}w∈W on ÂIR defined in [2, Theorem
1.4], where Uw(∆) = w.U∆ and χw(∆) : Uw(∆) −→ IRw(∆) is a homeomorphism defined
by

χw(∆)(w.m) = (mw−1.γ)γ∈∆, ∀m ∈ U∆, w ∈W.

For every g ∈ G and w ∈ W ′, we put Ωw
g = π(gN− × Uw(∆)), in which N− is the

analytic subgroup of G corresponding to n− = θ(n), where n =
∑

α∈Σ+

gα and define a

map

Φwg : N− × IR∆ −→ Ωw
g

by Φwg (n, t) = π(gn,w.ãt), ∀(n, t) ∈ N− × IR∆.

Based on this, we get the following theorem [5, Theorem 3.5].

Theorem 2.2. The topological space X̂′ have the following properties:

(i) X̂′ is a compact connected real analytic manifold and
⋃

w∈W ′,g∈G
Ωw
g is an open cov-

ering of X̂′ such that the maps Φwg are real analytic diffeomorphisms.

(ii) The action of G on X̂′ is analytic and the orbit Gπ(x) for a point x in X̂′ is
isomorphic to the homogeneous space G/P (x). In particular, the number of G-orbits
which are isomorphic to G/K (resp. G/P ) are just the number of elements in W ′.

3 INVARIANT DIFFERENTIAL OPERATORS

Let G be a connected real semisimple Lie group with finite center and θ be a Cartan
involution of G. Suppose that K is the maximal compact subgroup of G corresponding
to the Cartan involution θ. The coset space X = G/K is then a Riemannian symmetric
space. In [2], by choosing Σ′ = {α ∈ Σ | 2α /∈ Σ; α

2 /∈ Σ} instead of the restricted
root system Σ and using the action of the Weyl group, we constructed a compact real
analytic manifold X̂′ in which the Riemannian symmetric space G/K is realized as
an open subset and that G acts analytically on it. In this section, we shall show that
the system of invariant differential operators on the symmetric space X = G/K can
extends analytically on the compact G-space X̂′.
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First we recall after [7] on the structure of the algebra of invariant differential operators
on G/K. Let U(g) be the universal enveloping of gC, which is naturally identified
with D(G), the totality of the left G-invariant differential operators on G. Denote by
D(G/K) the algebra of left G-invariant differential operators on G/K and put

U(g)K = {D ∈ U(g) | Ad(k)D = D for any k ∈ K}.

Then D(G/K) is a polynomial ring over C and there exists a natural homomorphism
of U(g)K onto D(G/K) with the kernel U(g)K ∩ U(g)k.

For a Lie subalgebra b of g, let denote U(b) the universal enveloping algebra of bC. Then
we can naturally identify U(b) with a subalgebra of U(g). Let ξ̃ be the natural surjective
homomorphism of U(g)K onto D(G/K) with the kernel U(g)K ∩ U(g)k. It follows that
there is an isomorphism ξ between D(G/K) and U(g)K/(U(g)K ∩ U(g)k). Moreover,
since the Iwasawa decomposition g = k + a + n, we see that for any D ∈ D(G/K)K

there exists a unique element D′ ∈ U(a + n) such that D′ −D ∈ U(g)k.

Now we review the structure of invariant differential operators on G/K. First the com-
plex linear extension of the involution θ on gC is also denoted by the same letters.
Denote by Σ(b) the root system for the pair (gC, aC) and Σ(a)+ the set of positive
roots with respect to a compatible orders for θ(a) and θ. Put ρ = 1

2

∑
α∈Σ(a)+ α. De-

note by nC the nilpotent subalgebra of gC corresponding to θ(a)+ and nC = θ(nC).

From the Iwasawa decomposition gC = kC ⊕ nC ⊕ aC and the Poincare-Birkhoff-Witt
theorem, it follows that

U(g) = nC U(nC ⊕ aC)⊕ U(a)⊕ U(g)h. (3.1)

Then for any D ∈ D(G/K)K there exists a unique element D′a ∈ U(a) such that
D′a −D ∈ nCU(g) + U(g)k. Let denote

U(a)W = {D ∈ U(a) | Ad(w)D = D for any w ∈W}

and put Da = eρ ◦D′a ◦ e−ρ, where eρ is the function on A defined by eρ(a) = eρ(loga)

for all a ∈ a. Then the map

µ̃ : U(g)K −→ U(a), D 7→ Da

defines a surjective homomorphism of U(g)K onto U(a)W with the kernel U(g)K∩U(g)k.

Hence, based on the isomorphism ξ, we see that µ̃ induces the algebra isomorphism

µ : D(G/K) −→ U(a)W

by identifying algebras D(G/K) and U(g)K/(U(g)K ∩ U(g)k).

Now we will study G-invariant differential operators on the G-manifold X̂′ constructed
in Section 2 based on the invariant differential operators on the manifold X = G/K.
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Consider an element ã ∈ Â−IR such that ε(ã) ∈ {−1,+1}∆ and denote by ε = ε(ã)

the corresponding (extended) signature of roots. Then, by Definition 1.1 in [9], we
can determine an involution θε induced from the Cartan involution θ of g such that
g = kε + pε is the decomposition of g into eigenspaces kε and pε of θε, with respect to
eigenvalues +1 and −1.

Let (Kε)0 be the analytic subgroup of G corresponding to Lie subalgebra kε and denote
Kε = (Kε)0M. Then, by using Lemma 1.4 (ii) in [9], we see that Kε is a closed subgroup
of G with kε is its Lie algebra and in the case of θε extended into an involution of G,
denoted also by θε, the closed subgroup Kε is θε-invariant.

Moreover, the adjoint representation Ad of G induces an isomorphism between the
homogenous space G/Kε and the space Intg/Ad(Kε), where Intg is the adjoint group
of g. Then it follows from [9, Remark 1.5] that G/Kε becomes a symmetric homogenous
space and called an affine symmetric space.

For every w ∈ W ′ and ε ∈ {−1, 1}∆, consider Â′IR,ε = {w.ãt ∈ Â′IR | ε(ãt) = ε} and
denote X̂′w,ε = π(G× Â′IR,ε) the corresponding orbit in X̂′.

Consider the subset Fε = { γ ∈ ∆ | εã(γ) = ε(ã)γ 6= 0 } of ∆ corresponding to the
extended signature of roots ε ∈ {−1, 0, 1}∆ and denote P (ε) = (Mε∩K)AεNε the closed
subgroup of G with respect to the signature ε considered in the previous subsection. In
the case of Fε = ∆ for every ε = ε(ã); that is ε becomes a signature of roots, we see
that WFε = W, Mε = G and P (ε) = Kε.

Then, based on Theorem 2.5, we get the following corollary.

Corollary 3.1. For every w ∈W ′ and ε ∈ {−1, 1}∆, there exists an isomorphism

λwε : G/Kε −→ X̂′w,ε (3.2)

defined by λwε (gKε) = π(g, ω.ãt), for all g ∈ G and ε(ãt) = ε.

Denote D(G/Kε) the algebra of G-left invariant differential operators on G/Kε and
consider U(g)Kε = {D ∈ U(g) | Ad(k)D = D for any k ∈ Kε}. Then, by a similar argu-
ment as the case of D(G/K), there exists a canonical algebra surjective homomorphism
µ̃ε of U(g)Kε onto D(G/Kε) with its kernel is U(g)Kε ∩ U(g)kε.

Denote σε the automorphism of gC defined in [9, Lemma 1.3] and consider the au-
tomorphism of U(g) naturally induced by the automorphism σε that is also denoted
by σε. Then, applying Lemma 2.24 in [9], we get U(g)Kε = σε(U(g)K). It follows that
there is an isomorphism between U(g)Kε and U(g)K . Combining this with the algebra
isomorphism µ, we see that the surjective homomorphism µ̃ε induces an isomorphism
between algebras D(G/Kε) and U(a)W . In other words, we obtain the following lemma.

Lemma 3.2. For every signature of root ε ∈ {−1, 1}∆, there exists an isomorphism

µε : D(G/Kε) −→ U(a)W (3.3)

between algebras D(G/Kε) and U(a)W .



12 TRAN DAO DONG

Now, we go to determine G-invariant differential operators on the G-compact manifold
X̂′ based on the invariant differential operators on the affine symmetric space G/Kε.

Denote by D(X̂′) the algebra of G-invariant differential operators on the manifold X̂′

whose coefficients are real analytic functions. Then we have the following theorem.

Theorem 3.3. For every w ∈ W ′ and ε ∈ {−1, 1}∆, there exists an algebra isomor-
phism

λ : D(X̂′) −→ U(a)W

that is given by λ(D) = µε ◦ (λwε )−1(D|X̂′w,ε) for all D ∈ D(X̂′), which does not depend
on the choice of a signature ε of roots in {−1, 1}∆ and an element w in W ′.

Chứng minh. Because of X̂′w,ε is open in the connected manifold X̂′ and µε is an iso-
morphsm, it follows that λ is injective. Now we consider an element Da ∈ U(a)W . To
get the Theorem we have only to prove the existence of a differential operator D on X̂′

satisfying
µε ◦ (λwε )−1(D|X̂′w,ε) = Da.

Indeed, we first prove that

λwε ◦ (µε)
−1(Da) = λw

′
ε′ ◦ (µε′)

−1(Da) (3.4)

for a choice of signatures ε, ε′ of roots in {−1, 1}∆ and elements w, w′ in W ′ such that
X̂′w,ε = X̂′w′,ε′ .

Since µ̃ is a surjective homomorphism of U(g)K onto U(a)W , we can choose D̃ ∈ U(g)K

so that µ̃(D̃) = Da.

Then, based on the definitions of X̂′ and µε we see that (3.4) is equivalent to

µ̃ε ◦ σε(D̃) = µ̃ε ◦Ad(w−1w′)σε′(D̃) (3.5)

if X̂′w,ε = X̂′w′,ε′ .

Now by the same argument as the proof of Proposition 2.26 in [9], we can prove that
for a choice of signatures ε, ε′ of roots in {−1, 1}∆ and elements w, w′ in W ′ such that
X̂′w,ε = X̂′w′,ε′ , the formula (3.5) is true. In other words, the formula (3.4) is true.
Moreover, when ε is a trivial signature; that is ε = 1, it follows that λw1 ◦ (µ1)−1(Da)

can be analytically extended to a differential operator Dw
g on Ωw

g such that

Dw
g |Ωw

g ∩ X̂′w,ε = λwε ◦ (µε)
−1(Da)|Ωw

g ∩ X̂′w,ε

for every signature ε of roots and w ∈W ′.
Based on this and the formula (3.4), there exists a differential operetor D on X̂′ satis-
fying D|Ωw

g = Dw
g for any g ∈ G and w ∈W ′.

Then, it follows from the uniqueness of the analytic continuation that the operator D
is G-invariant and the theorem follows.
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